Introduction to Circles

Find a relationship between the x and y coordinate of any point that lies on the circle that is centered at the point (h, k) and has a radius of r.

A circle whose center is the point (h, k) with a radius of r has the equation:
$(x-h)^{2}+(y-k)^{2}=r^{2}$
This is called the standard equation of a circle

Determine the center and the radius of the circles below and then draw the graph of the equation:
$x^{2}+(y+3)^{2}=4$

$$
(x-2)^{2}+(y-3)^{2}=10
$$

Determine the equation of the circle, in standard form and expanded form, that is centered at the point $(1,-3)$ and has a radius of 5 .

Determine the standard form of the equation of the circle that has diameters at $(3,-1)$ and $(-1,-7)$.

Sketch the graph of the equation $5 x^{2}+5 y^{2}=240$

Sketch the graph of the equation $x^{2}+y^{2}+4 x-8 y-16=0$

Sketch the graph of the equation $4 x^{2}+4 y^{2}-24 x+5 y-10=0$

							${ }^{4}$								
							7								
							-3								
7	6	5				-1					4			7	8
							-								
							-2								
							-3								
							${ }^{-5}$								
							-6								
							-7								
							${ }_{\Omega}$								

